Pegylation of antimicrobial peptides maintains the active peptide conformation, model membrane interactions, and antimicrobial activity while improving lung tissue biocompatibility following airway delivery.
نویسندگان
چکیده
Antimicrobial peptides (AMPs) have therapeutic potential, particularly for localized infections such as those of the lung. Here we show that airway administration of a pegylated AMP minimizes lung tissue toxicity while nevertheless maintaining antimicrobial activity. CaLL, a potent synthetic AMP (KWKLFKKIFKRIVQRIKDFLR) comprising fragments of LL-37 and cecropin A peptides, was N-terminally pegylated (PEG-CaLL). PEG-CaLL derivatives retained significant antimicrobial activity (50% inhibitory concentrations [IC(50)s] 2- to 3-fold higher than those of CaLL) against bacterial lung pathogens even in the presence of lung lining fluid. Circular dichroism and fluorescence spectroscopy confirmed that conformational changes associated with the binding of CaLL to model microbial membranes were not disrupted by pegylation. Pegylation of CaLL reduced AMP-elicited cell toxicity as measured using in vitro lung epithelial primary cell cultures. Further, in a fully intact ex vivo isolated perfused rat lung (IPRL) model, airway-administered PEG-CaLL did not result in disruption of the pulmonary epithelial barrier, whereas CaLL caused an immediate loss of membrane integrity leading to pulmonary edema. All AMPs (CaLL, PEG-CaLL, LL-37, cecropin A) delivered to the lung by airway administration showed limited (<3%) pulmonary absorption in the IPRL with extensive AMP accumulation in lung tissue itself, a characteristic anticipated to be beneficial for the treatment of pulmonary infections. We conclude that pegylation may present a means of improving the lung biocompatibility of AMPs designed for the treatment of pulmonary infections.
منابع مشابه
Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility.
Peptide-coated nanoparticles are valuable tools for diverse biological applications, such as drug delivery, molecular recognition, and antimicrobial action. The functionalization of pre-fabricated nanoparticles with free peptides in solution is inefficient either due to aggregation of the particles or due to the poor ligand exchange reaction. Here, we present a one-pot synthesis for preparing g...
متن کاملComparison of Antimicrobial Properties and Toxicity of Natural S3 Peptide with Horseshoe Crab Amoebocyte Origin and its Mutants
Introduction: Antimicrobial peptides (AMPs) are compounds with antimicrobial properties that are studied widely due to the development of resistance of pathogenic bacteria to antibiotics. In the present study, the toxicity and antimicrobial effects of two natural monomeric peptides (S3 and S∆3) were compared with S3-S∆3 hybrids and S3 tetramers. Material & Methods: Protein hybrids (S∆3S3-2mer-G...
متن کاملمعرفی پپتید ضدمیکروبی جدید با نام Buforin–K از ترشحات پوستی وزغ کویری بومی یزد
Introduction: Today, research in the field of antimicrobial peptides is active. Thus, the aim of this study is to purify and determine biochemical properties (especially antimicrobial effect) of new antimicrobial peptides from skin secretions of bufo kavirensis. Methods: This is a descriptive study. The skin secretions of bufo was purified by biochemical manners and antimicrobial effects was ...
متن کاملMembrane-disruptive abilities of beta-hairpin antimicrobial peptides correlate with conformation and activity: a 31P and 1H NMR study.
The membrane interaction and solution conformation of two mutants of the beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), are investigated to understand the structural determinants of antimicrobial potency. One mutant, [A(6,8,13,15)] PG-1, does not have the two disulfide bonds in wild-type PG-1, while the other, [Delta(4,18) G10] PG-1, has only half the number of cationic residues. 31P s...
متن کاملExpression and antimicrobial activity analysis of dermaseptin B1 recombinant peptides in tobacco transgenic plants
Recently, new molecular breeding and genetic engineering approaches have emerged to overcome the limitations of conventional breeding methods in generating disease-resistance transgenic plants. The use of antimicrobial peptides (AMPs) to produce transgenic plants resistant to a wide range of plant pathogens has achieved great success. Among huge number of AMPs, Dermaseptin B1 (DrsB1), an antimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 56 6 شماره
صفحات -
تاریخ انتشار 2012